op Einleitung \subsection{Themen} \begin{itemize} \item Heidelberg bla \item Galaxy Foo bla \item Stauchen / Strecken bla \item Problem: Geschwindigkeit bla \item Benchmarks: \begin{itemize} \item 10000 Sterne - 1 Stern \item ... \end{itemize} \end{itemize} \subsection{Motivation} \paragraph{ \( \Phi \) } \begin{equation} \Phi(r) = - \frac{4\pi G \rho_0 R_s^3}{r} \ln ( 1+ \frac{r}{R_s} ) \end{equation} with the limits \begin{equation} \lim_{r\to \infty} \Phi=0 \end{equation} and \begin{equation} \lim_{r\to 0} \Phi=-4\pi G\rho_0 R_s^2 \end{equation} \paragraph{ \( \rho \) } \begin{equation} \rho(r) = \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot e^{\left( - \frac{(\Phi(r)}{\sigma^{2}} \right)} \end{equation} \paragraph{\( \rho_{new} \rightarrow (deriviation) \) } \begin{equation} \rho(r) \cdot 1-\frac{1}{(2 \cdot sigma^{2} )} \cdot ( Mxx \cdot x^{2} + 2 \cdot Mxy \cdot xy + Myy \cdot y^{2} )) \end{equation} % def rho_new(x, y, z): % a = (1 - ((1) / (2 * (sigma ** 2))) * ( Mxx * x**2 + 2 * Mxy * x * y + Myy * y**2 ) ) % return rho(x, y, z) * a % % # phi function % def phi(x): % if x == 0: % return -4 * pi * f_0 * G * R_s**2 % % a = - ( 4 * pi * G * f_0 * R_s ** 3 ) / x % b = np.log(1. + (x / R_s) ) % c = a * b % return c Motivations blah