package forces import ( "fmt" "git.darknebu.la/GalaxySimulator/Source/structs" "gopkg.in/cheggaaa/pb.v1" "math" ) // forces_acting calculates the force in between the two given stars s1 and s2 // The function return the force func AccelerationActing(s1 structs.Star2D, s2 structs.Star2D) structs.Vec2 { // Gravitational constant var G = 6.674E-11 // the vector from star s1 to star s2 var r12 = s2.C.Subtract(s1.C) // the distance between the stars var deltaR = r12.GetLength() scalarA := G * (s2.M) / math.Pow(deltaR, 2) directionVectorA := r12.GetDirVector() // Combine the sacalar and the firection vector resulting in a vector defining the // acceleration of the star A := directionVectorA.Multiply(scalarA) if math.IsNaN(A.X) { A.X = 0 } if math.IsNaN(A.Y) { A.Y = 0 } return A } // accelerations calculates the acceleration acting in between a given star and all the other stars in a given array. func accelerations(stars_arr []structs.Star2D, nr int) structs.Vec2 { // Acceleration structure var accelerationStructure = structs.Vec2{} // Iterate over all the stars in the stars_arr for index := range stars_arr { // If the current star is not the star itself if index != nr { // calculate the acceleration and add it to the overall acceleration of the star aa := AccelerationActing(stars_arr[nr], stars_arr[index]) accelerationStructure = accelerationStructure.Add(aa) } } return accelerationStructure } // accelerationThread calculates the acceleration acting on a given amount of stars in a given range for a given slice of stars // utilizing go-methods func accelerationThread(starSlice []structs.Star2D, localRangeStart int, localRangeEnd int, channel chan structs.Star2D) { // iterate over the given range for index := localRangeStart; index < localRangeEnd; index++ { /* TODO: Genrate an Octree: In the first step, all the stars are inside of one big cell that is subdivided recursively. A cell is subdivided as long as none of the exit conditions has been met: 1. The Cell contains fewer than a given number of stars 2. The Cell reaches a minimum size 3. When a maximum number of subdivisions has been reached */ // Calculate the acceleration acting inbetween the given star and all other stars var a = accelerations(starSlice, index) // create a new star newStar := starSlice[index].Copy() newStar.AccelerateVelocity(a, 1) // push the new Star into the channel channel <- newStar } } // CalcAllAccelerations calculates all the accelerations acting in between all the stars in the given starSlice slice and // returns a "new" slice containing the stars with their new velocities func CalcAllAccelerations(starSlice []structs.Star2D, threads int) []structs.Star2D { fmt.Println("Calculate all the acceletarions") // create a channel for bundling the stars generated in the go-methods channel := make(chan structs.Star2D, 1000) sliceLength := len(starSlice) // calculate the local range // Example: 100 stars with 4 threads = 25 stars per thread localRangeLen := sliceLength / threads // generate a new slice for storing the stars var newSlice []structs.Star2D //logplus.LogNeutral(fmt.Sprintf("Starting %d workers, each processing %d stars", threads, localRangeLen)) // start n go-methods each covering a part of the whole slice for i := 0; i < threads; i++ { // define the local range localRangeStart := i * localRangeLen localRangeEnd := (i * localRangeLen) + localRangeLen // calculate the accelerations for all the stars in the given slice in the given range and return them using the // given channel go accelerationThread(starSlice, localRangeStart, localRangeEnd, channel) } // Handle errors (10004 stars, but 1250 stars per thread, so 4 stars are not calculate and block the queue) if sliceLength > localRangeLen { // Calculate the amount of stars and their range remainingStars := sliceLength - (localRangeLen * threads) localRangeEnd := ((threads - 1) * localRangeLen) + localRangeLen // Run the Thread // go accelerationThread(starSlice, localRangeEnd, localRangeEnd+remainingStars, channel) accelerationThread(starSlice, localRangeEnd, localRangeEnd+remainingStars, channel) } // Initialize a new progress bar bar := pb.New(len(starSlice)).Prefix("Stars: ") bar.Start() // iterate over the amount of stars for i := 0; i < sliceLength; i++ { // block until a star is finisehd var newStar = <-channel // append the star from the channel to the newSlice for returning in the end newSlice = append(newSlice, newStar) // increment the progress bar and the counter bar.Increment() } bar.Finish() return newSlice } // Calculate the new positions of the stars using the func NextTimestep(starSlice []structs.Star2D, deltat float64) []structs.Star2D { // create a new slice for storing the "new" stars var newSlice []structs.Star2D // iterate over all the stars in the old slice for index := range starSlice { // move the star with it's velocity for time deltat newStar := starSlice[index].Copy() newStar.Move(deltat) // append the new star to the newSlice newSlice = append(newSlice, newStar) } return newSlice }