From 1a57267a17c2fc17fb6e104846fabc3e363c326c Mon Sep 17 00:00:00 2001 From: Emile Date: Fri, 16 Aug 2024 19:50:26 +0200 Subject: initial commit --- vendor/github.com/remyoudompheng/bigfft/fft.go | 370 +++++++++++++++++++++++++ 1 file changed, 370 insertions(+) create mode 100644 vendor/github.com/remyoudompheng/bigfft/fft.go (limited to 'vendor/github.com/remyoudompheng/bigfft/fft.go') diff --git a/vendor/github.com/remyoudompheng/bigfft/fft.go b/vendor/github.com/remyoudompheng/bigfft/fft.go new file mode 100644 index 0000000..2d4c1e7 --- /dev/null +++ b/vendor/github.com/remyoudompheng/bigfft/fft.go @@ -0,0 +1,370 @@ +// Package bigfft implements multiplication of big.Int using FFT. +// +// The implementation is based on the Schönhage-Strassen method +// using integer FFT modulo 2^n+1. +package bigfft + +import ( + "math/big" + "unsafe" +) + +const _W = int(unsafe.Sizeof(big.Word(0)) * 8) + +type nat []big.Word + +func (n nat) String() string { + v := new(big.Int) + v.SetBits(n) + return v.String() +} + +// fftThreshold is the size (in words) above which FFT is used over +// Karatsuba from math/big. +// +// TestCalibrate seems to indicate a threshold of 60kbits on 32-bit +// arches and 110kbits on 64-bit arches. +var fftThreshold = 1800 + +// Mul computes the product x*y and returns z. +// It can be used instead of the Mul method of +// *big.Int from math/big package. +func Mul(x, y *big.Int) *big.Int { + xwords := len(x.Bits()) + ywords := len(y.Bits()) + if xwords > fftThreshold && ywords > fftThreshold { + return mulFFT(x, y) + } + return new(big.Int).Mul(x, y) +} + +func mulFFT(x, y *big.Int) *big.Int { + var xb, yb nat = x.Bits(), y.Bits() + zb := fftmul(xb, yb) + z := new(big.Int) + z.SetBits(zb) + if x.Sign()*y.Sign() < 0 { + z.Neg(z) + } + return z +} + +// A FFT size of K=1< bits { + k = uint(i) + break + } + } + // The 1< words + m = words>>k + 1 + return +} + +// valueSize returns the length (in words) to use for polynomial +// coefficients, to compute a correct product of polynomials P*Q +// where deg(P*Q) < K (== 1<= 2*m*W+K + n := 2*m*_W + int(k) // necessary bits + K := 1 << (k - extra) + if K < _W { + K = _W + } + n = ((n / K) + 1) * K // round to a multiple of K + return n / _W +} + +// poly represents an integer via a polynomial in Z[x]/(x^K+1) +// where K is the FFT length and b^m is the computation basis 1<<(m*_W). +// If P = a[0] + a[1] x + ... a[n] x^(K-1), the associated natural number +// is P(b^m). +type poly struct { + k uint // k is such that K = 1< 0 { + length += len(p.a[na-1]) + } + n := make(nat, length) + m := p.m + np := n + for i := range p.a { + l := len(p.a[i]) + c := addVV(np[:l], np[:l], p.a[i]) + if np[l] < ^big.Word(0) { + np[l] += c + } else { + addVW(np[l:], np[l:], c) + } + np = np[m:] + } + n = trim(n) + return n +} + +func trim(n nat) nat { + for i := range n { + if n[len(n)-1-i] != 0 { + return n[:len(n)-i] + } + } + return nil +} + +// Mul multiplies p and q modulo X^K-1, where K = 1<= 1<= 1<> k + // p(x) = a_0 + a_1 x + ... + a_{K-1} x^(K-1) + // p(θx) = q(x) where + // q(x) = a_0 + θa_1 x + ... + θ^(K-1) a_{K-1} x^(K-1) + // + // Twist p by θ to obtain q. + tbits := make([]big.Word, (n+1)<> k + + // Perform an inverse Fourier transform to recover q. + qbits := make([]big.Word, (n+1)<> size + if backward { + ω2shift = -ω2shift + } + + // Easy cases. + if len(src[0]) != n+1 || len(dst[0]) != n+1 { + panic("len(src[0]) != n+1 || len(dst[0]) != n+1") + } + switch size { + case 0: + copy(dst[0], src[0]) + return + case 1: + dst[0].Add(src[0], src[1<