about summary refs log tree commit diff
path: root/src/python/spiral/galaxytools.py
blob: 1a9336ca8ae9edb209be31f8affa551de79efbe1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Import libraries
import math as math  # general math
import numpy as np  # advanced math

# import matplotlib.pyplot as plt  # plotting things


# class used to create galaxies
class new_galaxy(object):

    # Initialisation
    def __init__(self, galaxy_range):
        print(
            """>>> Initialising the list storing coordinates, forces and other
            values"""
        )

        # list used for storing the coordinates os the stars
        self.list_coords = []

        # list storing the overall force acting on one star
        self.list_force_star = []

        # list storing the coordinates of the midpoints of the spheres dividing
        # the galaxy into equaly big sized cells
        self.list_sphere_coords = []

        # self.list_sphere_stars = np.array(3, )

        print("\tDone\n")
        print(">>> Initialising variables and constants")

        # variable storing the number of stars generated
        self.num_of_stars = 0

        self.galaxy_range = int(galaxy_range)

        # define the universal gravitational constant
        self.G = 6.67408 * 10e11

        print("\tDone\n")

    # generate n new stars and store the coordinates in list_coords
    # n = number of stars to be generated
    # galaxy_range = size of the galaxy
    def gen_new_stars(self, n):
        print(">>> Generating Stars...")

        # for a given number of stars
        for i in range(0, n):

            # generate a temporary random coordinate inside a given range using
            # numpy
            self.temp_coord = np.random.uniform(
                low=0, high=self.galaxy_range, size=(4, ))

            # append the random coordinate to the list storing the coordinates
            self.list_coords.append(self.temp_coord)

        # increment the generated star counter
        self.num_of_stars += n
        print("\tDone")
        print("\tGenerated " + str(n) + " Stars\n")

    # print out all the coordinates in list_coords
    def print_stars(self):
        print(">>> Listing the coordinates of all stars:")
        # print the coordinates of every star
        for value in self.list_coords:
            print(value)

        print("\tDone\n")

    # calculate the forces acting between two stars on a specified axis
    # star1 = coordinates of the first star
    # star2 = coordinates of the second star
    # axes = "x", "y" or "z" (CASE SENSITIVE!)
    def calc_forces(self, star1, star2, axes):
        if axes == "x":
            mass = star1[3] * star2[3]
            distance = math.sqrt(math.pow(star1[0] - star2[0], 2))
        elif axes == "y":
            mass = star1[3] * star2[3]
            distance = math.sqrt(math.pow(star1[1] - star2[1], 2))
        elif axes == "z":
            mass = star1[3] * star2[3]
            distance = math.sqrt(math.pow(star1[2] - star2[2], 2))

        # stop division by zero
        if distance == 0:
            pass
        else:
            # return the acting force
            return self.G * mass / math.pow(distance, 2)

    # calculate all the forces acting in the current galaxy
    def calc_all_forces(self):
        print(">>> Calculating all the forces acting inbetween the stars:")

        if (self.num_of_stars <= 5):
            # print some information above the columns
            print(">>> Printing the forces acting inbetween every star")
            print("{:-<60}".format(""))
            print("\t| {:<3}| {:<3}| ".format("a", "b"))
            print("\t+{:-<4}+{:-<4}+{:-<60} ".format("", "", ""))

        else:
            print("\t[W] Too many stars to print out!")
            print("{:-<60}".format(""))

        # for every star
        for i in range(0, self.num_of_stars):

            # initialize
            self.force = 0

            # every other star:
            for j in range(0, self.num_of_stars):

                # don't calculate the force between a star and and itself
                if i != j and i < j:
                    self.arr_force = np.array((0, 0, 0))

                    # calculate the force between the two stars
                    force_x = self.calc_forces(self.list_coords[i],
                                               self.list_coords[j], "x")
                    force_y = self.calc_forces(self.list_coords[i],
                                               self.list_coords[j], "y")
                    force_z = self.calc_forces(self.list_coords[i],
                                               self.list_coords[j], "z")

                    # print("overall force: ", end="")
                    self.arr_force = np.array((force_x, force_y, force_z))

                    if (self.num_of_stars <= 5):
                        print("\t| {:<3}| {:<3}| {:<60}".format(
                            str(i), str(j), str(self.arr_force)))
                    """
                    force_x = 42
                    force_y = 36
                    force_z = 24

                    (0, 0, 0) --> (42, 36, 24)
                    """

            # append the variable to the list storing all the forces
            self.list_force_star.append(self.arr_force)

        print("{:-<60}".format(""))
        print("\tDone\n")

    # print the individual forces acting on a star
    def print_individual_forces(self, n=None, print_confirm=False):
        print(">>> Printing the individual forces acting on every star")

        if self.num_of_stars > 10:
            print("\t[W] Too many stars to print out!")
            print("{:-<60}".format(""))

            for i in range(0, 3):
                print("\t" + str(i) + " " + str(self.list_force_star[i]))

            print("\n\t...\n")

            for i in range(
                    int(len(self.list_force_star) - 3),
                    len(self.list_force_star)):
                print("\t" + str(i) + " " + str(self.list_force_star[i]))
            print("{:-<60}".format(""))

        else:
            print("{:-<60}".format(""))
            if n is None:
                # for value in self.list_force_star:
                for i in range(0, len(self.list_force_star)):
                    print("\t" + str(i) + " " + str(self.list_force_star[i]))
            else:
                print(self.list_force_star[n])

            print("{:-<60}".format(""))
            print("\tDone\n")

    # star      [x, y, z, m]
    # sphere    [x, y, z, r]
    def is_star_in_sphere(self, star, sphere):

        # define the sphere values
        self.sphere_x = sphere[0]
        self.sphere_y = sphere[1]
        self.sphere_z = sphere[2]
        self.sphere_r = sphere[3]

        # define the star coordinates
        self.star_x = star[0]
        self.star_y = star[1]
        self.star_z = star[2]

        self.sphere_x_neg = self.sphere_x - self.sphere_r
        self.sphere_x_pos = self.sphere_x + self.sphere_r

        self.sphere_y_neg = self.sphere_y - self.sphere_r
        self.sphere_y_pos = self.sphere_y + self.sphere_r

        self.sphere_z_neg = self.sphere_z - self.sphere_r
        self.sphere_z_pos = self.sphere_z + self.sphere_r

        # find out if the star is inside the sphere
        if self.sphere_x_neg < self.star_x < self.sphere_x_pos:
            if self.sphere_y_neg < self.star_y < self.sphere_y_pos:
                if self.sphere_z_neg < self.star_z < self.sphere_z_pos:
                    return True
                else:
                    return False
            else:
                return False
        else:
            return False

    # find out which stars in in which spheres
    def is_star_in_sphere_all(self):

        # define a counter for indexing the spheres
        tmp_counter = 0

        # cycle through all the stars
        for star in self.list_coords:

            # cycle through all the spheres
            for value in self.list_sphere_coords:

                # parse the needed values from the sphere list
                sphere = np.array((value[0:4]))

                # if the star is inside the sphere
                if (self.is_star_in_sphere(star, sphere) is True):

                    # print stuff
                    print(tmp_counter, end=" ")
                    print(star, end=" ")
                    print(sphere)

                    # increment the counter
                    tmp_counter += 1

                    # break the loop to stop possible multiple assignments
                    break

    # function generating the positions of the sphere cells
    def gen_sphere_positions(self, sampling_rate):

        # calculate the distance between the midpoints of the spheres
        sphere_distance = int(round(self.galaxy_range / sampling_rate, 0))

        # define the sphere_radius
        tmp_var = math.pow(sphere_distance, 2)
        sphere_radius = math.sqrt(tmp_var + tmp_var + tmp_var)

        # define a sphere counter for "labeling" the spheres
        tmp_counter = 0

        # cycle through all potential points
        for i in range(-self.galaxy_range, self.galaxy_range, sphere_distance):
            for j in range(-self.galaxy_range, self.galaxy_range,
                           sphere_distance):
                for k in range(-self.galaxy_range, self.galaxy_range,
                               sphere_distance):

                    # generate a temporary array combining all values
                    temp_arr = np.array((i, j, k, sphere_radius, tmp_counter))

                    # append the array to the list storing the sphere infos
                    self.list_sphere_coords.append(temp_arr)

                    # increment the sphere counter
                    tmp_counter += 1

    def calc_forces_sphere():
        pass

    def calc_forces_sphere_all():
        pass

    def gen_print_forces_after_t(t):
        pass

    # def all_stars_in_sphere(self, star, se)