1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
# import modules
import bpy
import matplotlib.pyplot as plt
import urllib
import math
import numpy as np
from timeit import default_timer as timer
# import helper-modules
# convert polar to cartesian koordinates:
# import poltocart as ptc
class TLE:
def get(value, category, satNr):
with open('TLE/' + category + '.txt') as data:
content = data.readlines()
if value == "name":
return content[(satNr)*3][0:15]
elif value == "LineNumber":
return content[((satNr)*3)+1][0:1]
elif value == "Classification":
return content[((satNr)*3)+1][7:8]
elif value == "LaunchYear":
return content[((satNr)*3)+1][9:11]
elif value == "LaunchNumber":
return content[((satNr)*3)+1][11:14]
elif value == "LaunchPiece":
return content[((satNr)*3)+1][14:17]
elif value == "EpochYear":
return content[((satNr)*3)+1][18:20]
elif value == "EpochDayFraction":
return content[((satNr)*3)+1][20:32]
elif value == "EpochDay":
return content[((satNr)*3)+1][20:23]
elif value == "EpochTime":
return content[((satNr)*3)+1][24:32]
elif value == "FirstTimeDerivative":
return content[((satNr)*3)+1][33:43]
elif value == "SecondTimeDerivative":
return content[((satNr)*3)+1][44:52]
elif value == "BSTARDragTerm":
return content[((satNr)*3)+1][53:61]
elif value == "Num0":
return content[((satNr)*3)+1][62:63]
elif value == "ElementSetNumber":
return content[((satNr)*3)+1][64:68]
elif value == "Checksum1":
return content[((satNr)*3)+1][68:69]
elif value == "LineNumber2":
return content[((satNr)*3)+2][0:1]
elif value == "Number2":
return content[((satNr)*3)+2][2:7]
elif value == "Inclination":
return content[((satNr)*3)+2][8:16]
elif value == "RAAN":
return content[((satNr)*3)+2][17:25]
elif value == "Eccentricity":
return content[((satNr)*3)+2][26:33]
elif value == "ArgumentOfPerigee":
return content[((satNr)*3)+2][34:42]
elif value == "MeanAnomaly":
return content[((satNr)*3)+2][43:51]
elif value == "MeanMotion":
return content[((satNr)*3)+2][52:63]
elif value == "Revloution":
return content[((satNr)*3)+2][63:68]
elif value == "Checksum2":
return content[((satNr)*3)+2][68:69]
# downlaod specific categeory
def download(category):
webx_loc = 'http://celestrak.com/NORAD/elements/' + category + '.txt'
disk_loc = 'TLE/' + category + '.txt'
urllib.request.urlretrieve(webx_loc, disk_loc)
# get number of satellites in specific ategory
def numOfSat(category):
with open('TLE/' + category + '.txt') as data:
content = data.readlines()
return int(len(content) / 3)
# print specified category
def printTLE(category, satNr):
with open('TLE/' + category + '.txt') as data:
content = data.readlines()
print(content[((satNr)*3)+1], end="")
print(content[((satNr)*3)+2], end="")
run_x_times = 10000
timer_list = list()
start_all = timer()
for value_mult in range(0, run_x_times, 1):
start = timer()
# controll values
category = "dummy"
globalScale = 1
satSize = 0.5
orbitSubDivs = 256
resolution = 5000 # get position of sat each x frames
threshold = 0.1
# if internet connection available:
# TLE.download(category)
# define
sce = bpy.context.scene
n = TLE.numOfSat(category)
numOfSat = TLE.numOfSat(category)
rotate = bpy.ops.transform.rotate
# static
earthRadius = 6371
daylengthsec = 86400
# create list
xyz = list( [[], [], []] for _ in range(0, numOfSat) )
# select all -> delete
bpy.ops.object.select_all(action='SELECT')
bpy.ops.object.delete(use_global=False)
# add earth model (sphere)
bpy.ops.mesh.primitive_uv_sphere_add(size=1, location=(0, 0, 0))
bpy.ops.object.subdivision_set(level=4)
# cycle through every satellite in one category
for i in range(0, numOfSat):
# define
satNr = i
name = TLE.get("name", category, satNr).rstrip("\n")
# get inclination and convert
inc_deg = float(TLE.get("Inclination", category, satNr))
inc_rad = inc_deg / 180 * math.pi
# get RAAN and convert
RAAN_deg = float(TLE.get("RAAN", category, satNr))
RAAN_rad = RAAN_deg * math.pi / 180
# get AoP and convert
AoP_deg = float(TLE.get("ArgumentOfPerigee", category, satNr))
AoP_rad = AoP_deg * math.pi / 180
# get Mean Motion
n0 = float(TLE.get("MeanMotion", category, satNr))
# define duration (time for one rotation around earth)
duration = int(daylengthsec / n0)
# calculate apogee / perigee
semimajoraxis = ((6.6228 / pow(n0, 2/3)) * earthRadius)
orbitheight = semimajoraxis - earthRadius
# calculate Eccentricity and convert ("decimal point assumed")
e0_a = str(TLE.get("Eccentricity", category, satNr))
e0 = float("0." + e0_a)
# define apogee and perigee
apogee = abs(semimajoraxis * (1 + e0) - earthRadius)
perigee = abs(semimajoraxis * (1 - e0) - earthRadius)
# print important values
# print("")
#
# print("{:<10}{:<80}".format("name:", name))
# print("{:<4}/{:<4}".format(i, numOfSat))
print((value_mult / run_x_times)*100)
# TLE.printTLE(category, satNr)
# print("")
# define names
orbitname = name
satname = name + "sat"
# add orbit, rename orbit
bpy.ops.mesh.primitive_circle_add(radius=1, vertices=orbitSubDivs)
bpy.context.object.name = orbitname
# add sat, rename sat
bpy.ops.mesh.primitive_cube_add(radius=satSize)
bpy.context.object.name = satname
# define object names
orbit = bpy.context.scene.objects[name]
sat = bpy.context.scene.objects[name + "sat"]
# convert orbit to curve and attach sat
sat.select = False
orbit.select = True
sce.objects.active = orbit
bpy.ops.object.convert(target='CURVE')
# set orbit duration
bpy.data.curves[name].path_duration = duration
# resize orbit
orbit.scale[0] = apogee
orbit.scale[1] = perigee
# move sat to perigee
sat.location[1] = perigee
# make sat follow orbit
sat.select = True
sce.objects.active = orbit
bpy.ops.object.parent_set(type='FOLLOW')
# set duration for 1 revolution
bpy.data.curves[orbitname].path_duration = duration
# rotate orbit
orbit.select = True
rotate(value=RAAN_rad, axis=(0, 0, 1))
rotate(value=inc_rad, axis=(1, 0, 0))
rotate(value=AoP_rad, axis=(0, 0, 1))
# Getting the position of a satellite:
# 1. jump to specific frame
# 2. clear parent (keep transform)
# 3. get position value and append it to a list
# 4. reset parent
for t in range(0, duration, resolution):
# jump to frame
sce.frame_set(t)
# clear parent
bpy.ops.object.parent_clear(type='CLEAR_KEEP_TRANSFORM')
# append sat location to list xyz
xyz[satNr][0].append(sat.location[0])
xyz[satNr][1].append(sat.location[1])
xyz[satNr][2].append(sat.location[2])
# reset parent
bpy.ops.object.parent_set(type="FOLLOW")
# end timer -> print runtime
end = timer()
# plot x, y and z values ove every satellite for every moment
# for i in range(0, numOfSat, 1):
# plt.plot(xyz[i][0], '-ro')
# plt.plot(xyz[i][1], '-go')
# plt.plot(xyz[i][2], '-bo')
#
# plt.show()
# Collision Detect
# https://hanemile.github.io/docs/master.pdf
# p. 8 - 11
# create an array filled with 0
# array[t, y, x]
# print("")
# print("{:<10}{:<10}".format("Total duration (sek.): ", end - start))
timer_list.append(end - start)
# print all timer values
print(timer_list)
# plot the timer_list and show it
plt.plot(timer_list, '-ro')
plt.show()
end_all = timer()
duration_all = start_all - end_all
print(duration_all)
plt.savefig('x10000_res100.png')
|