diff options
author | Emile <git@emile.space> | 2024-10-25 15:55:50 +0200 |
---|---|---|
committer | Emile <git@emile.space> | 2024-10-25 15:55:50 +0200 |
commit | c90f36e3dd179d2de96f4f5fe38d8dc9a9de6dfe (patch) | |
tree | 89e9afb41c5bf76f48cfb09305a2d3db8d302b06 /vendor/filippo.io/edwards25519/edwards25519.go | |
parent | 98bbb0f559a8883bc47bae80607dbe326a448e61 (diff) |
Diffstat (limited to 'vendor/filippo.io/edwards25519/edwards25519.go')
-rw-r--r-- | vendor/filippo.io/edwards25519/edwards25519.go | 427 |
1 files changed, 427 insertions, 0 deletions
diff --git a/vendor/filippo.io/edwards25519/edwards25519.go b/vendor/filippo.io/edwards25519/edwards25519.go new file mode 100644 index 0000000..a744da2 --- /dev/null +++ b/vendor/filippo.io/edwards25519/edwards25519.go @@ -0,0 +1,427 @@ +// Copyright (c) 2017 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package edwards25519 + +import ( + "errors" + + "filippo.io/edwards25519/field" +) + +// Point types. + +type projP1xP1 struct { + X, Y, Z, T field.Element +} + +type projP2 struct { + X, Y, Z field.Element +} + +// Point represents a point on the edwards25519 curve. +// +// This type works similarly to math/big.Int, and all arguments and receivers +// are allowed to alias. +// +// The zero value is NOT valid, and it may be used only as a receiver. +type Point struct { + // Make the type not comparable (i.e. used with == or as a map key), as + // equivalent points can be represented by different Go values. + _ incomparable + + // The point is internally represented in extended coordinates (X, Y, Z, T) + // where x = X/Z, y = Y/Z, and xy = T/Z per https://eprint.iacr.org/2008/522. + x, y, z, t field.Element +} + +type incomparable [0]func() + +func checkInitialized(points ...*Point) { + for _, p := range points { + if p.x == (field.Element{}) && p.y == (field.Element{}) { + panic("edwards25519: use of uninitialized Point") + } + } +} + +type projCached struct { + YplusX, YminusX, Z, T2d field.Element +} + +type affineCached struct { + YplusX, YminusX, T2d field.Element +} + +// Constructors. + +func (v *projP2) Zero() *projP2 { + v.X.Zero() + v.Y.One() + v.Z.One() + return v +} + +// identity is the point at infinity. +var identity, _ = new(Point).SetBytes([]byte{ + 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}) + +// NewIdentityPoint returns a new Point set to the identity. +func NewIdentityPoint() *Point { + return new(Point).Set(identity) +} + +// generator is the canonical curve basepoint. See TestGenerator for the +// correspondence of this encoding with the values in RFC 8032. +var generator, _ = new(Point).SetBytes([]byte{ + 0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, + 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, + 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, + 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66}) + +// NewGeneratorPoint returns a new Point set to the canonical generator. +func NewGeneratorPoint() *Point { + return new(Point).Set(generator) +} + +func (v *projCached) Zero() *projCached { + v.YplusX.One() + v.YminusX.One() + v.Z.One() + v.T2d.Zero() + return v +} + +func (v *affineCached) Zero() *affineCached { + v.YplusX.One() + v.YminusX.One() + v.T2d.Zero() + return v +} + +// Assignments. + +// Set sets v = u, and returns v. +func (v *Point) Set(u *Point) *Point { + *v = *u + return v +} + +// Encoding. + +// Bytes returns the canonical 32-byte encoding of v, according to RFC 8032, +// Section 5.1.2. +func (v *Point) Bytes() []byte { + // This function is outlined to make the allocations inline in the caller + // rather than happen on the heap. + var buf [32]byte + return v.bytes(&buf) +} + +func (v *Point) bytes(buf *[32]byte) []byte { + checkInitialized(v) + + var zInv, x, y field.Element + zInv.Invert(&v.z) // zInv = 1 / Z + x.Multiply(&v.x, &zInv) // x = X / Z + y.Multiply(&v.y, &zInv) // y = Y / Z + + out := copyFieldElement(buf, &y) + out[31] |= byte(x.IsNegative() << 7) + return out +} + +var feOne = new(field.Element).One() + +// SetBytes sets v = x, where x is a 32-byte encoding of v. If x does not +// represent a valid point on the curve, SetBytes returns nil and an error and +// the receiver is unchanged. Otherwise, SetBytes returns v. +// +// Note that SetBytes accepts all non-canonical encodings of valid points. +// That is, it follows decoding rules that match most implementations in +// the ecosystem rather than RFC 8032. +func (v *Point) SetBytes(x []byte) (*Point, error) { + // Specifically, the non-canonical encodings that are accepted are + // 1) the ones where the field element is not reduced (see the + // (*field.Element).SetBytes docs) and + // 2) the ones where the x-coordinate is zero and the sign bit is set. + // + // Read more at https://hdevalence.ca/blog/2020-10-04-its-25519am, + // specifically the "Canonical A, R" section. + + y, err := new(field.Element).SetBytes(x) + if err != nil { + return nil, errors.New("edwards25519: invalid point encoding length") + } + + // -x² + y² = 1 + dx²y² + // x² + dx²y² = x²(dy² + 1) = y² - 1 + // x² = (y² - 1) / (dy² + 1) + + // u = y² - 1 + y2 := new(field.Element).Square(y) + u := new(field.Element).Subtract(y2, feOne) + + // v = dy² + 1 + vv := new(field.Element).Multiply(y2, d) + vv = vv.Add(vv, feOne) + + // x = +√(u/v) + xx, wasSquare := new(field.Element).SqrtRatio(u, vv) + if wasSquare == 0 { + return nil, errors.New("edwards25519: invalid point encoding") + } + + // Select the negative square root if the sign bit is set. + xxNeg := new(field.Element).Negate(xx) + xx = xx.Select(xxNeg, xx, int(x[31]>>7)) + + v.x.Set(xx) + v.y.Set(y) + v.z.One() + v.t.Multiply(xx, y) // xy = T / Z + + return v, nil +} + +func copyFieldElement(buf *[32]byte, v *field.Element) []byte { + copy(buf[:], v.Bytes()) + return buf[:] +} + +// Conversions. + +func (v *projP2) FromP1xP1(p *projP1xP1) *projP2 { + v.X.Multiply(&p.X, &p.T) + v.Y.Multiply(&p.Y, &p.Z) + v.Z.Multiply(&p.Z, &p.T) + return v +} + +func (v *projP2) FromP3(p *Point) *projP2 { + v.X.Set(&p.x) + v.Y.Set(&p.y) + v.Z.Set(&p.z) + return v +} + +func (v *Point) fromP1xP1(p *projP1xP1) *Point { + v.x.Multiply(&p.X, &p.T) + v.y.Multiply(&p.Y, &p.Z) + v.z.Multiply(&p.Z, &p.T) + v.t.Multiply(&p.X, &p.Y) + return v +} + +func (v *Point) fromP2(p *projP2) *Point { + v.x.Multiply(&p.X, &p.Z) + v.y.Multiply(&p.Y, &p.Z) + v.z.Square(&p.Z) + v.t.Multiply(&p.X, &p.Y) + return v +} + +// d is a constant in the curve equation. +var d, _ = new(field.Element).SetBytes([]byte{ + 0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75, + 0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00, + 0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c, + 0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52}) +var d2 = new(field.Element).Add(d, d) + +func (v *projCached) FromP3(p *Point) *projCached { + v.YplusX.Add(&p.y, &p.x) + v.YminusX.Subtract(&p.y, &p.x) + v.Z.Set(&p.z) + v.T2d.Multiply(&p.t, d2) + return v +} + +func (v *affineCached) FromP3(p *Point) *affineCached { + v.YplusX.Add(&p.y, &p.x) + v.YminusX.Subtract(&p.y, &p.x) + v.T2d.Multiply(&p.t, d2) + + var invZ field.Element + invZ.Invert(&p.z) + v.YplusX.Multiply(&v.YplusX, &invZ) + v.YminusX.Multiply(&v.YminusX, &invZ) + v.T2d.Multiply(&v.T2d, &invZ) + return v +} + +// (Re)addition and subtraction. + +// Add sets v = p + q, and returns v. +func (v *Point) Add(p, q *Point) *Point { + checkInitialized(p, q) + qCached := new(projCached).FromP3(q) + result := new(projP1xP1).Add(p, qCached) + return v.fromP1xP1(result) +} + +// Subtract sets v = p - q, and returns v. +func (v *Point) Subtract(p, q *Point) *Point { + checkInitialized(p, q) + qCached := new(projCached).FromP3(q) + result := new(projP1xP1).Sub(p, qCached) + return v.fromP1xP1(result) +} + +func (v *projP1xP1) Add(p *Point, q *projCached) *projP1xP1 { + var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element + + YplusX.Add(&p.y, &p.x) + YminusX.Subtract(&p.y, &p.x) + + PP.Multiply(&YplusX, &q.YplusX) + MM.Multiply(&YminusX, &q.YminusX) + TT2d.Multiply(&p.t, &q.T2d) + ZZ2.Multiply(&p.z, &q.Z) + + ZZ2.Add(&ZZ2, &ZZ2) + + v.X.Subtract(&PP, &MM) + v.Y.Add(&PP, &MM) + v.Z.Add(&ZZ2, &TT2d) + v.T.Subtract(&ZZ2, &TT2d) + return v +} + +func (v *projP1xP1) Sub(p *Point, q *projCached) *projP1xP1 { + var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element + + YplusX.Add(&p.y, &p.x) + YminusX.Subtract(&p.y, &p.x) + + PP.Multiply(&YplusX, &q.YminusX) // flipped sign + MM.Multiply(&YminusX, &q.YplusX) // flipped sign + TT2d.Multiply(&p.t, &q.T2d) + ZZ2.Multiply(&p.z, &q.Z) + + ZZ2.Add(&ZZ2, &ZZ2) + + v.X.Subtract(&PP, &MM) + v.Y.Add(&PP, &MM) + v.Z.Subtract(&ZZ2, &TT2d) // flipped sign + v.T.Add(&ZZ2, &TT2d) // flipped sign + return v +} + +func (v *projP1xP1) AddAffine(p *Point, q *affineCached) *projP1xP1 { + var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element + + YplusX.Add(&p.y, &p.x) + YminusX.Subtract(&p.y, &p.x) + + PP.Multiply(&YplusX, &q.YplusX) + MM.Multiply(&YminusX, &q.YminusX) + TT2d.Multiply(&p.t, &q.T2d) + + Z2.Add(&p.z, &p.z) + + v.X.Subtract(&PP, &MM) + v.Y.Add(&PP, &MM) + v.Z.Add(&Z2, &TT2d) + v.T.Subtract(&Z2, &TT2d) + return v +} + +func (v *projP1xP1) SubAffine(p *Point, q *affineCached) *projP1xP1 { + var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element + + YplusX.Add(&p.y, &p.x) + YminusX.Subtract(&p.y, &p.x) + + PP.Multiply(&YplusX, &q.YminusX) // flipped sign + MM.Multiply(&YminusX, &q.YplusX) // flipped sign + TT2d.Multiply(&p.t, &q.T2d) + + Z2.Add(&p.z, &p.z) + + v.X.Subtract(&PP, &MM) + v.Y.Add(&PP, &MM) + v.Z.Subtract(&Z2, &TT2d) // flipped sign + v.T.Add(&Z2, &TT2d) // flipped sign + return v +} + +// Doubling. + +func (v *projP1xP1) Double(p *projP2) *projP1xP1 { + var XX, YY, ZZ2, XplusYsq field.Element + + XX.Square(&p.X) + YY.Square(&p.Y) + ZZ2.Square(&p.Z) + ZZ2.Add(&ZZ2, &ZZ2) + XplusYsq.Add(&p.X, &p.Y) + XplusYsq.Square(&XplusYsq) + + v.Y.Add(&YY, &XX) + v.Z.Subtract(&YY, &XX) + + v.X.Subtract(&XplusYsq, &v.Y) + v.T.Subtract(&ZZ2, &v.Z) + return v +} + +// Negation. + +// Negate sets v = -p, and returns v. +func (v *Point) Negate(p *Point) *Point { + checkInitialized(p) + v.x.Negate(&p.x) + v.y.Set(&p.y) + v.z.Set(&p.z) + v.t.Negate(&p.t) + return v +} + +// Equal returns 1 if v is equivalent to u, and 0 otherwise. +func (v *Point) Equal(u *Point) int { + checkInitialized(v, u) + + var t1, t2, t3, t4 field.Element + t1.Multiply(&v.x, &u.z) + t2.Multiply(&u.x, &v.z) + t3.Multiply(&v.y, &u.z) + t4.Multiply(&u.y, &v.z) + + return t1.Equal(&t2) & t3.Equal(&t4) +} + +// Constant-time operations + +// Select sets v to a if cond == 1 and to b if cond == 0. +func (v *projCached) Select(a, b *projCached, cond int) *projCached { + v.YplusX.Select(&a.YplusX, &b.YplusX, cond) + v.YminusX.Select(&a.YminusX, &b.YminusX, cond) + v.Z.Select(&a.Z, &b.Z, cond) + v.T2d.Select(&a.T2d, &b.T2d, cond) + return v +} + +// Select sets v to a if cond == 1 and to b if cond == 0. +func (v *affineCached) Select(a, b *affineCached, cond int) *affineCached { + v.YplusX.Select(&a.YplusX, &b.YplusX, cond) + v.YminusX.Select(&a.YminusX, &b.YminusX, cond) + v.T2d.Select(&a.T2d, &b.T2d, cond) + return v +} + +// CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0. +func (v *projCached) CondNeg(cond int) *projCached { + v.YplusX.Swap(&v.YminusX, cond) + v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond) + return v +} + +// CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0. +func (v *affineCached) CondNeg(cond int) *affineCached { + v.YplusX.Swap(&v.YminusX, cond) + v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond) + return v +} |