summary refs log tree commit diff
path: root/vendor/filippo.io/edwards25519/scalar.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/filippo.io/edwards25519/scalar.go')
-rw-r--r--vendor/filippo.io/edwards25519/scalar.go343
1 files changed, 343 insertions, 0 deletions
diff --git a/vendor/filippo.io/edwards25519/scalar.go b/vendor/filippo.io/edwards25519/scalar.go
new file mode 100644
index 0000000..3fd1653
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/scalar.go
@@ -0,0 +1,343 @@
+// Copyright (c) 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package edwards25519
+
+import (
+	"encoding/binary"
+	"errors"
+)
+
+// A Scalar is an integer modulo
+//
+//	l = 2^252 + 27742317777372353535851937790883648493
+//
+// which is the prime order of the edwards25519 group.
+//
+// This type works similarly to math/big.Int, and all arguments and
+// receivers are allowed to alias.
+//
+// The zero value is a valid zero element.
+type Scalar struct {
+	// s is the scalar in the Montgomery domain, in the format of the
+	// fiat-crypto implementation.
+	s fiatScalarMontgomeryDomainFieldElement
+}
+
+// The field implementation in scalar_fiat.go is generated by the fiat-crypto
+// project (https://github.com/mit-plv/fiat-crypto) at version v0.0.9 (23d2dbc)
+// from a formally verified model.
+//
+// fiat-crypto code comes under the following license.
+//
+//     Copyright (c) 2015-2020 The fiat-crypto Authors. All rights reserved.
+//
+//     Redistribution and use in source and binary forms, with or without
+//     modification, are permitted provided that the following conditions are
+//     met:
+//
+//         1. Redistributions of source code must retain the above copyright
+//         notice, this list of conditions and the following disclaimer.
+//
+//     THIS SOFTWARE IS PROVIDED BY the fiat-crypto authors "AS IS"
+//     AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
+//     THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+//     PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Berkeley Software Design,
+//     Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+//     EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+//     PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+//     PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+//     LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+//     NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+//     SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+
+// NewScalar returns a new zero Scalar.
+func NewScalar() *Scalar {
+	return &Scalar{}
+}
+
+// MultiplyAdd sets s = x * y + z mod l, and returns s. It is equivalent to
+// using Multiply and then Add.
+func (s *Scalar) MultiplyAdd(x, y, z *Scalar) *Scalar {
+	// Make a copy of z in case it aliases s.
+	zCopy := new(Scalar).Set(z)
+	return s.Multiply(x, y).Add(s, zCopy)
+}
+
+// Add sets s = x + y mod l, and returns s.
+func (s *Scalar) Add(x, y *Scalar) *Scalar {
+	// s = 1 * x + y mod l
+	fiatScalarAdd(&s.s, &x.s, &y.s)
+	return s
+}
+
+// Subtract sets s = x - y mod l, and returns s.
+func (s *Scalar) Subtract(x, y *Scalar) *Scalar {
+	// s = -1 * y + x mod l
+	fiatScalarSub(&s.s, &x.s, &y.s)
+	return s
+}
+
+// Negate sets s = -x mod l, and returns s.
+func (s *Scalar) Negate(x *Scalar) *Scalar {
+	// s = -1 * x + 0 mod l
+	fiatScalarOpp(&s.s, &x.s)
+	return s
+}
+
+// Multiply sets s = x * y mod l, and returns s.
+func (s *Scalar) Multiply(x, y *Scalar) *Scalar {
+	// s = x * y + 0 mod l
+	fiatScalarMul(&s.s, &x.s, &y.s)
+	return s
+}
+
+// Set sets s = x, and returns s.
+func (s *Scalar) Set(x *Scalar) *Scalar {
+	*s = *x
+	return s
+}
+
+// SetUniformBytes sets s = x mod l, where x is a 64-byte little-endian integer.
+// If x is not of the right length, SetUniformBytes returns nil and an error,
+// and the receiver is unchanged.
+//
+// SetUniformBytes can be used to set s to a uniformly distributed value given
+// 64 uniformly distributed random bytes.
+func (s *Scalar) SetUniformBytes(x []byte) (*Scalar, error) {
+	if len(x) != 64 {
+		return nil, errors.New("edwards25519: invalid SetUniformBytes input length")
+	}
+
+	// We have a value x of 512 bits, but our fiatScalarFromBytes function
+	// expects an input lower than l, which is a little over 252 bits.
+	//
+	// Instead of writing a reduction function that operates on wider inputs, we
+	// can interpret x as the sum of three shorter values a, b, and c.
+	//
+	//    x = a + b * 2^168 + c * 2^336  mod l
+	//
+	// We then precompute 2^168 and 2^336 modulo l, and perform the reduction
+	// with two multiplications and two additions.
+
+	s.setShortBytes(x[:21])
+	t := new(Scalar).setShortBytes(x[21:42])
+	s.Add(s, t.Multiply(t, scalarTwo168))
+	t.setShortBytes(x[42:])
+	s.Add(s, t.Multiply(t, scalarTwo336))
+
+	return s, nil
+}
+
+// scalarTwo168 and scalarTwo336 are 2^168 and 2^336 modulo l, encoded as a
+// fiatScalarMontgomeryDomainFieldElement, which is a little-endian 4-limb value
+// in the 2^256 Montgomery domain.
+var scalarTwo168 = &Scalar{s: [4]uint64{0x5b8ab432eac74798, 0x38afddd6de59d5d7,
+	0xa2c131b399411b7c, 0x6329a7ed9ce5a30}}
+var scalarTwo336 = &Scalar{s: [4]uint64{0xbd3d108e2b35ecc5, 0x5c3a3718bdf9c90b,
+	0x63aa97a331b4f2ee, 0x3d217f5be65cb5c}}
+
+// setShortBytes sets s = x mod l, where x is a little-endian integer shorter
+// than 32 bytes.
+func (s *Scalar) setShortBytes(x []byte) *Scalar {
+	if len(x) >= 32 {
+		panic("edwards25519: internal error: setShortBytes called with a long string")
+	}
+	var buf [32]byte
+	copy(buf[:], x)
+	fiatScalarFromBytes((*[4]uint64)(&s.s), &buf)
+	fiatScalarToMontgomery(&s.s, (*fiatScalarNonMontgomeryDomainFieldElement)(&s.s))
+	return s
+}
+
+// SetCanonicalBytes sets s = x, where x is a 32-byte little-endian encoding of
+// s, and returns s. If x is not a canonical encoding of s, SetCanonicalBytes
+// returns nil and an error, and the receiver is unchanged.
+func (s *Scalar) SetCanonicalBytes(x []byte) (*Scalar, error) {
+	if len(x) != 32 {
+		return nil, errors.New("invalid scalar length")
+	}
+	if !isReduced(x) {
+		return nil, errors.New("invalid scalar encoding")
+	}
+
+	fiatScalarFromBytes((*[4]uint64)(&s.s), (*[32]byte)(x))
+	fiatScalarToMontgomery(&s.s, (*fiatScalarNonMontgomeryDomainFieldElement)(&s.s))
+
+	return s, nil
+}
+
+// scalarMinusOneBytes is l - 1 in little endian.
+var scalarMinusOneBytes = [32]byte{236, 211, 245, 92, 26, 99, 18, 88, 214, 156, 247, 162, 222, 249, 222, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16}
+
+// isReduced returns whether the given scalar in 32-byte little endian encoded
+// form is reduced modulo l.
+func isReduced(s []byte) bool {
+	if len(s) != 32 {
+		return false
+	}
+
+	for i := len(s) - 1; i >= 0; i-- {
+		switch {
+		case s[i] > scalarMinusOneBytes[i]:
+			return false
+		case s[i] < scalarMinusOneBytes[i]:
+			return true
+		}
+	}
+	return true
+}
+
+// SetBytesWithClamping applies the buffer pruning described in RFC 8032,
+// Section 5.1.5 (also known as clamping) and sets s to the result. The input
+// must be 32 bytes, and it is not modified. If x is not of the right length,
+// SetBytesWithClamping returns nil and an error, and the receiver is unchanged.
+//
+// Note that since Scalar values are always reduced modulo the prime order of
+// the curve, the resulting value will not preserve any of the cofactor-clearing
+// properties that clamping is meant to provide. It will however work as
+// expected as long as it is applied to points on the prime order subgroup, like
+// in Ed25519. In fact, it is lost to history why RFC 8032 adopted the
+// irrelevant RFC 7748 clamping, but it is now required for compatibility.
+func (s *Scalar) SetBytesWithClamping(x []byte) (*Scalar, error) {
+	// The description above omits the purpose of the high bits of the clamping
+	// for brevity, but those are also lost to reductions, and are also
+	// irrelevant to edwards25519 as they protect against a specific
+	// implementation bug that was once observed in a generic Montgomery ladder.
+	if len(x) != 32 {
+		return nil, errors.New("edwards25519: invalid SetBytesWithClamping input length")
+	}
+
+	// We need to use the wide reduction from SetUniformBytes, since clamping
+	// sets the 2^254 bit, making the value higher than the order.
+	var wideBytes [64]byte
+	copy(wideBytes[:], x[:])
+	wideBytes[0] &= 248
+	wideBytes[31] &= 63
+	wideBytes[31] |= 64
+	return s.SetUniformBytes(wideBytes[:])
+}
+
+// Bytes returns the canonical 32-byte little-endian encoding of s.
+func (s *Scalar) Bytes() []byte {
+	// This function is outlined to make the allocations inline in the caller
+	// rather than happen on the heap.
+	var encoded [32]byte
+	return s.bytes(&encoded)
+}
+
+func (s *Scalar) bytes(out *[32]byte) []byte {
+	var ss fiatScalarNonMontgomeryDomainFieldElement
+	fiatScalarFromMontgomery(&ss, &s.s)
+	fiatScalarToBytes(out, (*[4]uint64)(&ss))
+	return out[:]
+}
+
+// Equal returns 1 if s and t are equal, and 0 otherwise.
+func (s *Scalar) Equal(t *Scalar) int {
+	var diff fiatScalarMontgomeryDomainFieldElement
+	fiatScalarSub(&diff, &s.s, &t.s)
+	var nonzero uint64
+	fiatScalarNonzero(&nonzero, (*[4]uint64)(&diff))
+	nonzero |= nonzero >> 32
+	nonzero |= nonzero >> 16
+	nonzero |= nonzero >> 8
+	nonzero |= nonzero >> 4
+	nonzero |= nonzero >> 2
+	nonzero |= nonzero >> 1
+	return int(^nonzero) & 1
+}
+
+// nonAdjacentForm computes a width-w non-adjacent form for this scalar.
+//
+// w must be between 2 and 8, or nonAdjacentForm will panic.
+func (s *Scalar) nonAdjacentForm(w uint) [256]int8 {
+	// This implementation is adapted from the one
+	// in curve25519-dalek and is documented there:
+	// https://github.com/dalek-cryptography/curve25519-dalek/blob/f630041af28e9a405255f98a8a93adca18e4315b/src/scalar.rs#L800-L871
+	b := s.Bytes()
+	if b[31] > 127 {
+		panic("scalar has high bit set illegally")
+	}
+	if w < 2 {
+		panic("w must be at least 2 by the definition of NAF")
+	} else if w > 8 {
+		panic("NAF digits must fit in int8")
+	}
+
+	var naf [256]int8
+	var digits [5]uint64
+
+	for i := 0; i < 4; i++ {
+		digits[i] = binary.LittleEndian.Uint64(b[i*8:])
+	}
+
+	width := uint64(1 << w)
+	windowMask := uint64(width - 1)
+
+	pos := uint(0)
+	carry := uint64(0)
+	for pos < 256 {
+		indexU64 := pos / 64
+		indexBit := pos % 64
+		var bitBuf uint64
+		if indexBit < 64-w {
+			// This window's bits are contained in a single u64
+			bitBuf = digits[indexU64] >> indexBit
+		} else {
+			// Combine the current 64 bits with bits from the next 64
+			bitBuf = (digits[indexU64] >> indexBit) | (digits[1+indexU64] << (64 - indexBit))
+		}
+
+		// Add carry into the current window
+		window := carry + (bitBuf & windowMask)
+
+		if window&1 == 0 {
+			// If the window value is even, preserve the carry and continue.
+			// Why is the carry preserved?
+			// If carry == 0 and window & 1 == 0,
+			//    then the next carry should be 0
+			// If carry == 1 and window & 1 == 0,
+			//    then bit_buf & 1 == 1 so the next carry should be 1
+			pos += 1
+			continue
+		}
+
+		if window < width/2 {
+			carry = 0
+			naf[pos] = int8(window)
+		} else {
+			carry = 1
+			naf[pos] = int8(window) - int8(width)
+		}
+
+		pos += w
+	}
+	return naf
+}
+
+func (s *Scalar) signedRadix16() [64]int8 {
+	b := s.Bytes()
+	if b[31] > 127 {
+		panic("scalar has high bit set illegally")
+	}
+
+	var digits [64]int8
+
+	// Compute unsigned radix-16 digits:
+	for i := 0; i < 32; i++ {
+		digits[2*i] = int8(b[i] & 15)
+		digits[2*i+1] = int8((b[i] >> 4) & 15)
+	}
+
+	// Recenter coefficients:
+	for i := 0; i < 63; i++ {
+		carry := (digits[i] + 8) >> 4
+		digits[i] -= carry << 4
+		digits[i+1] += carry
+	}
+
+	return digits
+}