1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
// Copyright 2024 Sumner Evans.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ed25519 implements the Ed25519 signature algorithm. See
// https://ed25519.cr.yp.to/.
//
// This package stores the private key in the NaCl format, which is a different
// format than that used by the [crypto/ed25519] package in the standard
// library.
//
// This picture will help with the rest of the explanation:
// https://blog.mozilla.org/warner/files/2011/11/key-formats.png
//
// The private key in the [crypto/ed25519] package is a 64-byte value where the
// first 32-bytes are the seed and the last 32-bytes are the public key.
//
// The private key in this package is stored in the NaCl format. That is, the
// left 32-bytes are the private scalar A and the right 32-bytes are the right
// half of the SHA512 result.
//
// The contents of this package are mostly copied from the standard library,
// and as such the source code is licensed under the BSD license of the
// standard library implementation.
//
// Other notable changes from the standard library include:
//
// - The Seed function of the standard library is not implemented in this
// package because there is no way to recover the seed after hashing it.
package ed25519
import (
"crypto"
"crypto/ed25519"
cryptorand "crypto/rand"
"crypto/sha512"
"crypto/subtle"
"errors"
"io"
"strconv"
"filippo.io/edwards25519"
)
const (
// PublicKeySize is the size, in bytes, of public keys as used in this package.
PublicKeySize = 32
// PrivateKeySize is the size, in bytes, of private keys as used in this package.
PrivateKeySize = 64
// SignatureSize is the size, in bytes, of signatures generated and verified by this package.
SignatureSize = 64
// SeedSize is the size, in bytes, of private key seeds. These are the private key representations used by RFC 8032.
SeedSize = 32
)
// PublicKey is the type of Ed25519 public keys.
type PublicKey []byte
// Any methods implemented on PublicKey might need to also be implemented on
// PrivateKey, as the latter embeds the former and will expose its methods.
// Equal reports whether pub and x have the same value.
func (pub PublicKey) Equal(x crypto.PublicKey) bool {
switch x := x.(type) {
case PublicKey:
return subtle.ConstantTimeCompare(pub, x) == 1
case ed25519.PublicKey:
return subtle.ConstantTimeCompare(pub, x) == 1
default:
return false
}
}
// PrivateKey is the type of Ed25519 private keys. It implements [crypto.Signer].
type PrivateKey []byte
// Public returns the [PublicKey] corresponding to priv.
//
// This method differs from the standard library because it calculates the
// public key instead of returning the right half of the private key (which
// contains the public key in the standard library).
func (priv PrivateKey) Public() crypto.PublicKey {
s, err := edwards25519.NewScalar().SetBytesWithClamping(priv[:32])
if err != nil {
panic("ed25519: internal error: setting scalar failed")
}
return (&edwards25519.Point{}).ScalarBaseMult(s).Bytes()
}
// Equal reports whether priv and x have the same value.
func (priv PrivateKey) Equal(x crypto.PrivateKey) bool {
// TODO do we have any need to check equality with standard library ed25519
// private keys?
xx, ok := x.(PrivateKey)
if !ok {
return false
}
return subtle.ConstantTimeCompare(priv, xx) == 1
}
// Sign signs the given message with priv. rand is ignored and can be nil.
//
// If opts.HashFunc() is [crypto.SHA512], the pre-hashed variant Ed25519ph is used
// and message is expected to be a SHA-512 hash, otherwise opts.HashFunc() must
// be [crypto.Hash](0) and the message must not be hashed, as Ed25519 performs two
// passes over messages to be signed.
//
// A value of type [Options] can be used as opts, or crypto.Hash(0) or
// crypto.SHA512 directly to select plain Ed25519 or Ed25519ph, respectively.
func (priv PrivateKey) Sign(rand io.Reader, message []byte, opts crypto.SignerOpts) (signature []byte, err error) {
hash := opts.HashFunc()
context := ""
if opts, ok := opts.(*Options); ok {
context = opts.Context
}
switch {
case hash == crypto.SHA512: // Ed25519ph
if l := len(message); l != sha512.Size {
return nil, errors.New("ed25519: bad Ed25519ph message hash length: " + strconv.Itoa(l))
}
if l := len(context); l > 255 {
return nil, errors.New("ed25519: bad Ed25519ph context length: " + strconv.Itoa(l))
}
signature := make([]byte, SignatureSize)
sign(signature, priv, message, domPrefixPh, context)
return signature, nil
case hash == crypto.Hash(0) && context != "": // Ed25519ctx
if l := len(context); l > 255 {
return nil, errors.New("ed25519: bad Ed25519ctx context length: " + strconv.Itoa(l))
}
signature := make([]byte, SignatureSize)
sign(signature, priv, message, domPrefixCtx, context)
return signature, nil
case hash == crypto.Hash(0): // Ed25519
return Sign(priv, message), nil
default:
return nil, errors.New("ed25519: expected opts.HashFunc() zero (unhashed message, for standard Ed25519) or SHA-512 (for Ed25519ph)")
}
}
// Options can be used with [PrivateKey.Sign] or [VerifyWithOptions]
// to select Ed25519 variants.
type Options struct {
// Hash can be zero for regular Ed25519, or crypto.SHA512 for Ed25519ph.
Hash crypto.Hash
// Context, if not empty, selects Ed25519ctx or provides the context string
// for Ed25519ph. It can be at most 255 bytes in length.
Context string
}
// HashFunc returns o.Hash.
func (o *Options) HashFunc() crypto.Hash { return o.Hash }
// GenerateKey generates a public/private key pair using entropy from rand.
// If rand is nil, [crypto/rand.Reader] will be used.
//
// The output of this function is deterministic, and equivalent to reading
// [SeedSize] bytes from rand, and passing them to [NewKeyFromSeed].
func GenerateKey(rand io.Reader) (PublicKey, PrivateKey, error) {
if rand == nil {
rand = cryptorand.Reader
}
seed := make([]byte, SeedSize)
if _, err := io.ReadFull(rand, seed); err != nil {
return nil, nil, err
}
privateKey := NewKeyFromSeed(seed)
return PublicKey(privateKey.Public().([]byte)), privateKey, nil
}
// NewKeyFromSeed calculates a private key from a seed. It will panic if
// len(seed) is not [SeedSize]. This function is provided for interoperability
// with RFC 8032. RFC 8032's private keys correspond to seeds in this
// package.
func NewKeyFromSeed(seed []byte) PrivateKey {
// Outline the function body so that the returned key can be stack-allocated.
privateKey := make([]byte, PrivateKeySize)
newKeyFromSeed(privateKey, seed)
return privateKey
}
func newKeyFromSeed(privateKey, seed []byte) {
if l := len(seed); l != SeedSize {
panic("ed25519: bad seed length: " + strconv.Itoa(l))
}
h := sha512.Sum512(seed)
// Apply clamping to get A in the left half, and leave the right half
// as-is. This gets the private key into the NaCl format.
h[0] &= 248
h[31] &= 63
h[31] |= 64
copy(privateKey, h[:])
}
// Sign signs the message with privateKey and returns a signature. It will
// panic if len(privateKey) is not [PrivateKeySize].
func Sign(privateKey PrivateKey, message []byte) []byte {
// Outline the function body so that the returned signature can be
// stack-allocated.
signature := make([]byte, SignatureSize)
sign(signature, privateKey, message, domPrefixPure, "")
return signature
}
// Domain separation prefixes used to disambiguate Ed25519/Ed25519ph/Ed25519ctx.
// See RFC 8032, Section 2 and Section 5.1.
const (
// domPrefixPure is empty for pure Ed25519.
domPrefixPure = ""
// domPrefixPh is dom2(phflag=1) for Ed25519ph. It must be followed by the
// uint8-length prefixed context.
domPrefixPh = "SigEd25519 no Ed25519 collisions\x01"
// domPrefixCtx is dom2(phflag=0) for Ed25519ctx. It must be followed by the
// uint8-length prefixed context.
domPrefixCtx = "SigEd25519 no Ed25519 collisions\x00"
)
func sign(signature []byte, privateKey PrivateKey, message []byte, domPrefix, context string) {
if l := len(privateKey); l != PrivateKeySize {
panic("ed25519: bad private key length: " + strconv.Itoa(l))
}
// We have to extract the public key from the private key.
publicKey := privateKey.Public().([]byte)
// The private key is already the hashed value of the seed.
h := privateKey
s, err := edwards25519.NewScalar().SetBytesWithClamping(h[:32])
if err != nil {
panic("ed25519: internal error: setting scalar failed")
}
prefix := h[32:]
mh := sha512.New()
if domPrefix != domPrefixPure {
mh.Write([]byte(domPrefix))
mh.Write([]byte{byte(len(context))})
mh.Write([]byte(context))
}
mh.Write(prefix)
mh.Write(message)
messageDigest := make([]byte, 0, sha512.Size)
messageDigest = mh.Sum(messageDigest)
r, err := edwards25519.NewScalar().SetUniformBytes(messageDigest)
if err != nil {
panic("ed25519: internal error: setting scalar failed")
}
R := (&edwards25519.Point{}).ScalarBaseMult(r)
kh := sha512.New()
if domPrefix != domPrefixPure {
kh.Write([]byte(domPrefix))
kh.Write([]byte{byte(len(context))})
kh.Write([]byte(context))
}
kh.Write(R.Bytes())
kh.Write(publicKey)
kh.Write(message)
hramDigest := make([]byte, 0, sha512.Size)
hramDigest = kh.Sum(hramDigest)
k, err := edwards25519.NewScalar().SetUniformBytes(hramDigest)
if err != nil {
panic("ed25519: internal error: setting scalar failed")
}
S := edwards25519.NewScalar().MultiplyAdd(k, s, r)
copy(signature[:32], R.Bytes())
copy(signature[32:], S.Bytes())
}
// Verify reports whether sig is a valid signature of message by publicKey. It
// will panic if len(publicKey) is not [PublicKeySize].
//
// This is just a wrapper around [ed25519.Verify] from the standard library.
func Verify(publicKey PublicKey, message, sig []byte) bool {
return ed25519.Verify(ed25519.PublicKey(publicKey), message, sig)
}
// VerifyWithOptions reports whether sig is a valid signature of message by
// publicKey. A valid signature is indicated by returning a nil error. It will
// panic if len(publicKey) is not [PublicKeySize].
//
// If opts.Hash is [crypto.SHA512], the pre-hashed variant Ed25519ph is used and
// message is expected to be a SHA-512 hash, otherwise opts.Hash must be
// [crypto.Hash](0) and the message must not be hashed, as Ed25519 performs two
// passes over messages to be signed.
//
// This is just a wrapper around [ed25519.VerifyWithOptions] from the standard
// library.
func VerifyWithOptions(publicKey PublicKey, message, sig []byte, opts *Options) error {
return ed25519.VerifyWithOptions(ed25519.PublicKey(publicKey), message, sig, &ed25519.Options{
Hash: opts.Hash,
Context: opts.Context,
})
}
|