diff options
author | hanemile <hanemile@protonmail.com> | 2019-01-16 19:59:47 +0100 |
---|---|---|
committer | hanemile <hanemile@protonmail.com> | 2019-01-16 19:59:47 +0100 |
commit | ed62e1ea666dcb8073cf174712b855cc9963c4b8 (patch) | |
tree | ad76f256c18cc118c0a1fe9b2bed68c0b8a01714 | |
parent | 1dbe7f2fc21c24996c196e24d12b9deee464ee57 (diff) |
implemented methods calculating the center of mass, the total mass of given trees
-rw-r--r-- | quadtree.go | 158 |
1 files changed, 128 insertions, 30 deletions
diff --git a/quadtree.go b/quadtree.go index 4a84843..dbbf229 100644 --- a/quadtree.go +++ b/quadtree.go @@ -3,6 +3,8 @@ package structs import ( "fmt" "io/ioutil" + "log" + "math" "os/exec" ) @@ -205,53 +207,149 @@ func (n Node) GetAllStars() []Star2D { } // CalcCenterOfMass calculates the center of mass for every node in the treee -func (n *Node) CalcCenterOfMass() { - meanPosX := 0.0 - meanPosY := 0.0 - totalMass := 0.0 +func (n *Node) CalcCenterOfMass() Vec2 { + fmt.Printf("[CalcCenterOfMass] %v\n", n.Boundry.Width) - // if the subtree is not empty + if n.Boundry.Width < 10 { + return Vec2{} + } + + // if the subtrees are not empty if n.Subtrees != ([4]*Node{}) { + for i := 0; i < len(n.Subtrees); i++ { + // get the center of mass for the subtree + subtreeCenterOfMassX := n.Subtrees[i].CalcCenterOfMass().X + subtreeCenterOfMassY := n.Subtrees[i].CalcCenterOfMass().Y - // iterate over all the subtrees - for index, _ := range n.Subtrees { + // get the totalmass of the subtree + subtreeTotalMass := n.Subtrees[i].TotalMass - // calculate the center of mass of the subtree - n.Subtrees[index].CalcCenterOfMass() + // calculate the center of mass of both + n.CenterOfMass.X = subtreeCenterOfMassX * subtreeTotalMass + n.CenterOfMass.Y = subtreeCenterOfMassY * subtreeTotalMass + } + } - if n.Subtrees[index].TotalMass == 0 { - n.Subtrees[index].CalcTotalMass() - } + if n.Star != (Star2D{}) { + n.CenterOfMass = n.Star.C + } - meanPosX += n.Subtrees[index].CenterOfMass.X * n.Subtrees[index].TotalMass - meanPosY += n.Subtrees[index].CenterOfMass.Y * n.Subtrees[index].TotalMass - totalMass += n.Subtrees[index].TotalMass + n.CenterOfMass.X = n.CenterOfMass.X / n.TotalMass + n.CenterOfMass.Y = n.CenterOfMass.Y / n.TotalMass + + return n.CenterOfMass +} + +// CalcTotalMass calculates the total mass for every node in the tree +func (n *Node) CalcTotalMass() float64 { + + // if the subtrees are not empty + if n.Subtrees != ([4]*Node{}) { + for i := 0; i < len(n.Subtrees); i++ { + n.TotalMass += n.Subtrees[i].CalcTotalMass() } } - meanPosX = meanPosX / totalMass - meanPosY = meanPosY / totalMass - n.TotalMass = totalMass - n.CenterOfMass = Vec2{meanPosX, meanPosY} + // if the star in the subtree is not empty + if n.Star != (Star2D{}) { + n.TotalMass += n.Star.M + } + + return n.TotalMass } -// CalcTotalMass calculates the total mass for every node in the tree -func (n *Node) CalcTotalMass() { - totalMass := 0.0 +func (n Node) CalcAllForces(star Star2D, theta float64) Vec2 { + // initialize a variable storing the overall force + var localForce Vec2 = Vec2{} + log.Printf("[CalcAllforces] Boundary Width: %f", n.Boundry.Width) + + // calculate the local theta + var tmpX float64 = math.Pow(star.C.X-n.Star.C.X, 2) + var tmpY float64 = math.Pow(star.C.Y-n.Star.C.Y, 2) + var distance float64 = math.Sqrt(tmpX + tmpY) + + log.Printf("[CalcAllforces] n.Boundary.Width=%f", n.Boundry.Width) + log.Printf("[CalcAllforces] distance=%f", distance) + var localtheta float64 = n.Boundry.Width / distance + log.Printf("[CalcAllforces] localtheta=%f", localtheta) // if the subtree is not empty if n.Subtrees != ([4]*Node{}) { + if localtheta < theta { + log.Printf("[CalcAllforces] not recursing deeper ++++++++++++++++++++++++ ") + // don't recurse further into the tree + // calculate the forces inbetween the star and the node + + nodeStar := Star2D{ + C: Vec2{ + X: n.CenterOfMass.X, + Y: n.CenterOfMass.Y, + }, + V: Vec2{ + X: 0, + Y: 0, + }, + M: n.TotalMass, + } - // iterate over all the subtrees - for index, _ := range n.Subtrees { - - totalMass += n.Subtrees[index].Star.M + if star != nodeStar { + log.Printf("[CalcAllforces] (%v) < +++++++ > (%v)\n", star, nodeStar) + force := CalcForce(star, nodeStar) + localForce.X += force.X + localForce.Y += force.Y + } - // calculate the mass of the subtree and add it to the totalmass - n.Subtrees[index].CalcTotalMass() - totalMass += n.Subtrees[index].TotalMass + } else { + log.Printf("[CalcAllforces] recursing deeper ----------------------------") + // recurse deeper + for i := 0; i < len(n.Subtrees); i++ { + force := n.Subtrees[i].CalcAllForces(star, theta) + localForce.X += force.X + localForce.Y += force.Y + } + } + } else { + if n.Star != (Star2D{}) { + if star != n.Star { + log.Printf("[CalcAllforces] not recursing deeper ====================== ") + log.Printf("[CalcAllforces] (%v) < ------- > (%v)\n", star, n.Star) + force := CalcForce(star, n.Star) + localForce.X += force.X + localForce.Y += force.Y + } } } - n.TotalMass = totalMass + log.Printf("[CalcAllforces] localforce: %v +-+-+-+-+-+-+-+-+-+- ", localForce) + return localForce + +} + +// CalcForce calculates the force exerted on s1 by s2 and returns a vector representing that force +func CalcForce(s1 Star2D, s2 Star2D) Vec2 { + G := 6.6726 * math.Pow(10, -11) + + // calculate the force acting + var combinedMass float64 = s1.M * s2.M + var distance float64 = math.Sqrt(math.Pow(math.Abs(s1.C.X-s2.C.X), 2) + math.Pow(math.Abs(s1.C.Y-s2.C.Y), 2)) + fmt.Printf("\t- combinedMass: %f\n", combinedMass) + fmt.Printf("\t- distance: %f\n", distance) + fmt.Printf("\t- distance squared: %f\n", math.Pow(distance, 2)) + fmt.Printf("\t- combinedMass / distance: %f\n", combinedMass/math.Pow(distance, 2)) + + var scalar float64 = G * ((combinedMass) / math.Pow(distance, 2)) + fmt.Printf("\t- Scalar: %f\n", scalar) + + // define a unit vector pointing from s1 to s2 + var vector Vec2 = Vec2{s2.C.X - s1.C.X, s2.C.Y - s1.C.Y} + var UnitVector Vec2 = Vec2{vector.X / distance, vector.Y / distance} + fmt.Printf("\t- Vector: %v\n", vector) + fmt.Printf("\t- UnitVector: %v\n", UnitVector) + + // multiply the vector with the force to get a vector representing the force acting + var force Vec2 = UnitVector.Multiply(scalar) + fmt.Printf("\t- force: %v\n", force) + + // return the force exerted on s1 by s2 + return force } |