about summary refs log tree commit diff
path: root/quadtree.go
blob: 054d9d352be00d10ae91f87b9e7b8fe41e813022 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
package structs

import (
	"fmt"
	"log"
)

// Definition of a quadtree and it's nodes recursively
type Quadtree struct {
	Boundary     BoundingBox `json:"boundary"`     // Spatial outreach of the quadtree
	CenterOfMass Vec2        `json:"CenterOfMass"` // Center of mass of the cell
	TotalMass    float64     `json:"totalMass"`    // Total mass of the cell
	Depth        int         `json:"depth"`        // Depth of the cell in the quadtree
	Star         Star2D      `json:"star"`         // Star inside the cell
	Leaf         bool        `json:"Leaf"`         // Quadtree is a leaf or not

	// NW, NE, SW, SE
	Quadrants [4]*Quadtree `json:"Quadrants"` // List of quadtrees representing individual Quadrants

	// Quadrants
	//northWest *Quadtree
	//northEast *Quadtree
	//southWest *Quadtree
	//southEast *Quadtree
}

// SetCenterOfMass is a setter method for quadtrees.
// It sets the CenterOfMass of the quadtree to the given value
func (q *Quadtree) SetCenterOfMass(centerOfMass Vec2) {
	q.CenterOfMass = centerOfMass
}

// CalcCenterOfMass is a calculator method for quadtrees.
// It recursively walks through the quadtree and calculates it's Center of mass.
// The calculated Center of mass is then inserted into the CenterOfMass variable.
func (q *Quadtree) CalcCenterOfMass() (Vec2, float64) {
	var totalMass float64 = 0
	var x float64 = 0
	var y float64 = 0

	q.IsLeaf()
	// If the Node is a leaf
	if q.Leaf == true {

		// update the values needed to calculate the Center of mass
		totalMass += q.Star.M
		x += q.Star.C.X * q.Star.M
		y += q.Star.C.X * q.Star.M

		return Vec2{x, y}, totalMass

	} else {

		// Iterate over all the Quadrants
		for _, element := range q.Quadrants {

			// Calculate the Center of mass for each quadrant
			centerOfMass, totalMass := element.CalcCenterOfMass()

			// Update the overall CenterOfMass for the individual quadtree
			q.CenterOfMass.X += centerOfMass.X
			q.CenterOfMass.Y += centerOfMass.Y
			q.TotalMass += totalMass
		}
	}

	// Return the original CenterOfMass and totalMass
	return q.CenterOfMass, q.TotalMass
}

// IsLeaf is a method for quadtrees returning true if the node is a leaf (has no children)
// or returning false if the node is nor a leaf (has children).
func (q *Quadtree) IsLeaf() {

	// assume that the node is a leaf
	q.Leaf = true

	// iterate over all the elements in the quadtree (all the quadrants)
	for _, element := range q.Quadrants {

		// if one of the quadrants is not nil , the node is not a leaf
		if element != nil {
			q.Leaf = false
		}
	}
}

// NewQuadtree generates a new root node.
func NewQuadtree(boundary BoundingBox) *Quadtree {
	newquadtree := &Quadtree{
		Boundary: BoundingBox{
			Center: Vec2{
				X: boundary.Center.X,
				Y: boundary.Center.Y,
			},
			Width: boundary.Width,
		},
		CenterOfMass: Vec2{},
		TotalMass:    0,
		Depth:        0,
		Star:         Star2D{},
		Leaf:         true,
		Quadrants:    [4]*Quadtree{},
	}
	log.Printf("[+++] New Quadtree: %v", newquadtree)
	return newquadtree
}

// Insert inserts the given point into the quadtree the method is called on
func (q *Quadtree) Insert(point Star2D) {
	log.Printf("[   ] Inserting point %v into the tree %v", point, q)

	// prints the stars inside of the leaves of the current node
	log.Printf("[>>>] - Current Star [node]: %v", q.Star)
	for i := 0; i < 4; i++ {
		if q.Quadrants[i] != nil {
			log.Printf("[>>>] - Current Star [%d]: %v", i, q.Quadrants[i].Star)
		} else {
			log.Printf("[>>>] - Current Star [%d]: ", i)
		}
	}

	// create shortcuts for the various bounding box variables
	bx := q.Boundary.Center.X
	by := q.Boundary.Center.Y
	bw := q.Boundary.Width
	log.Printf("[ ~ ] \t Bounding Box X: %f", bx)
	log.Printf("[ ~ ] \t Bounding Box Y: %f", by)
	log.Printf("[ ~ ] \t Bounding Box Width: %f", bw)

	// Insert thee given star into the tree
	// Case 1: There is no star inside of the node
	if q.Star == (Star2D{Vec2{}, Vec2{}, 0}) {
		log.Printf("[   ] There was no star inside of the node -> inserting directly")
		q.Star = point

		// if the star is not a leaf, try to insert the star into the correct leaf
		// if there all ready is a star inside of the leaf, subdivide that leaf and insert the two nodes recursively
		// into that leaf
		// TODO: implement the comment above

	// Case 2: There is all ready a star inside of the node
	} else {
		log.Printf("[ ! ] There is allready a star inside of the node -> subdividing")

		// Test if the star is left or right of the center point
		if point.C.X < bx && point.C.X > bx-bw {
			log.Println("[<  ] \t\t The point is left of the center point!")

			// Test if the star is above or below the center point
			if point.C.Y > by && point.C.Y < by+bw {
				log.Println("[ ^ ] \t\t The point is above of the center point!")

				// Subdivide if...
				// ... the quadrant does not contain a node yet or if there is all ready a node in the quadrant
				// ... the quadrant is a leaf
				if (q.Quadrants[0] == nil || q.Quadrants[0].Star != (Star2D{Vec2{}, Vec2{}, 0})) && q.Leaf == true {
					q.subdivide()
				} else {
					q.Quadrants[0].Insert(point)
				}

			} else {
				log.Println("[ v ] \t\t The point is below of the center point!")
				if (q.Quadrants[2] == nil || q.Quadrants[2].Star != (Star2D{Vec2{}, Vec2{}, 0})) && q.Leaf == true {
					q.subdivide()
				} else {
					q.Quadrants[2].Insert(point)
				}
			}

		} else {
			log.Println("[ > ] \t\t The point is right of the center point!")

			// Test if the star is above or below the center point
			if point.C.Y > by && point.C.Y < by+bw {
				log.Println("[ ^ ] \t\t The point is above of the center point!")
				if (q.Quadrants[1] == nil || q.Quadrants[1].Star != (Star2D{Vec2{}, Vec2{}, 0})) && q.Leaf == true {
					q.subdivide()
				} else {
					q.Quadrants[1].Insert(point)
				}
			} else {
				log.Println("[ v ] \t\t The point is below of the center point!")
				if (q.Quadrants[3] == nil || q.Quadrants[3].Star != (Star2D{Vec2{}, Vec2{}, 0})) && q.Leaf == true {
					q.subdivide()
				} else {
					q.Quadrants[3].Insert(point)
				}
			}
		}
	}

	log.Printf("[>>>] Current Star [node]: %v", q.Star)
	for i := 0; i < 4; i++ {
		if q.Quadrants[i] != nil {
			log.Printf("[>>>] Current Star [%d]: %v", i, q.Quadrants[i].Star)
		} else {
			log.Printf("[>>>] Current Star [%d]: ", i)
		}
	}

	// log.Printf("[   ] Tree after insertion: %v", *q)
	// q.print()
}

// print recursively prints the given quadtree
func (q *Quadtree) print() {

	log.Printf("[   ] Beginning of the print function ")

	// iterate over all four child nodes
	for i := 0; i < 4; i++ {

		// if the child node is no an empty tree, print it
		if *q.Quadrants[i] != (Quadtree{}) {
			fmt.Println(q.Quadrants[i])

			// make a recursive call on the child printing all it's quadtrees
			q.Quadrants[i].print()
		}
	}

	log.Printf("[   ] End of the print function ")
}

// subdivide subdivides the quadtree it is called on
func (q *Quadtree) subdivide() {
	// Toggle the leaf state: the node is not a leaf anymore
	q.Leaf = false

	// Get the "old" bounding box values
	oldCenterX := q.Boundary.Center.X
	oldCenterY := q.Boundary.Center.Y
	oldWidth := q.Boundary.Width

	// Calculate the bounding box values for the new quadrants
	newCenterNorthWest := Vec2{oldCenterX - (oldWidth / 4), oldCenterY + (oldWidth / 4)}
	newCenterNorthEast := Vec2{oldCenterX + (oldWidth / 4), oldCenterY + (oldWidth / 4)}
	newCenterSouthWest := Vec2{oldCenterX - (oldWidth / 4), oldCenterY - (oldWidth / 4)}
	newCenterSouthEast := Vec2{oldCenterX + (oldWidth / 4), oldCenterY - (oldWidth / 4)}

	// Calculate the new width
	newWidth := oldWidth / 2

	// Define the new bounding boxes using the values calculated above
	NorthWestBoundingBox := NewBoundingBox(newCenterNorthWest, newWidth)
	NorthEastBoundingBox := NewBoundingBox(newCenterNorthEast, newWidth)
	SouthWestBoundingBox := NewBoundingBox(newCenterSouthWest, newWidth)
	SouthEastBoundingBox := NewBoundingBox(newCenterSouthEast, newWidth)

	// Generate new quadrants using the new bounding boxes and assign them to the quadtree
	q.Quadrants[0] = NewQuadtree(NorthWestBoundingBox)
	q.Quadrants[1] = NewQuadtree(NorthEastBoundingBox)
	q.Quadrants[2] = NewQuadtree(SouthWestBoundingBox)
	q.Quadrants[3] = NewQuadtree(SouthEastBoundingBox)
}